

Natural capping of the Volgermeerpolder

- from landfill to nature -

Rina Clemens

Outline of the presentation

- introduction ACV
- background Volgermeerpolder (VMP)
- remedial planning, design and remediation (1998-2010)
- management phase: natural capping (>2010)
- lessons learned
- conclusions

Copenhagen, November 9-10, 2009 GreenRemediation, Incorporating Sustainable

Introduction ACV

- 1+1>2
- 2000: Advising Combination Volgermeer
 - TAUW BV
 - Witteveen+Bos

- development "Natural Cap" approach
 - Volgermeerpolder
 - Ilperveld (landfill in nature area)
 - Kanaalpolder (interception ditch)
- · Kyrgyzstan, Tajikistan, Uzbekistan

Background VMP – history

• former peat reclamation (~1900)

Background VMP – history

• VMP used as landfill (1960-1970)

copenhagen, November 9-10, 2009 SreenRemediation, Incorporating Sustainable Approaches in Site

Background VMP - the landfill

- landfill: 100 ha, ~8 m deep
- · domestic and chemical waste
- mixture of contaminants:
 - ~30,000 barrels with:
 - benzene
 - monochlorbenzene
 - Agent Orange
 - dioxines
 - _

Remediation plan – Eco variant (1998)

Specific aims

- preventing contact risks
- · prevention and control of waste spread
- · creating conditions for developing a natural wetland

Remedial approach

- classic standard cover (soil / HDPE-foil)
- buffer zone with groundwater monitoring
- interception or isolation of the landfill

enhagen, November 9-10, 2009

Remediation – groundwater monitoring

Buffer with groundwater monitoring

- · control area
 - zone of 50 m around VMP
 - monitoring wells (350)
 - different depths

Results

- 30 years of results (>5 years)
- no spreading of contamination
- limited by surrounding peat soil
- peat works as a natural barrier

Conclusion: the waste was unintentionally dumped at a very favorable location

Remediation → Management (>2010)

Aftercare

- standard cover → limited lifespan (50-100 years)
- replacement necessary after 30 years (according to remediation plan)
- considerable effort, resources and cost
- nuisance for those living nearby
- negative for redeveloped Flora & Fauna

To avoid replacement of the standard cover in 30 years, using the principles of nature, ACV developed the NATURAL CAP

Management: introduction to natural capping

- Natural capping = gradual and functional replacement of the standard cover by a natural layer of living, organic material
- Use the time after remediation the management phase to create the natural cap

Natural capping - VMP

- natural cap
 - recovery of peat in pond-system
 - peat as natural isolation
 - reduction of the risk of contact/spread
 - no renewal of foil necessary
- advantages of peat as 'natural cap'
 - grows naturally
 - added value for nature development
 - low permeability for water
 - a natural carbon filter for organic contaminants

Copenhagen, November 9-10, 2009 GreenRemediation, Incorporating Sustain

Management: developing the natural cap

Manage the area in such a way that:

- peat can grow in the shallow ponds
- in time create a sufficient layer of organic material
- take over the environmental, physical and hydraulic qualifications of the standard cover (foil)
- the spread of contamination is buffered by the peat soil

For this validation is necessary

Validation of the natural cap

knowledge development

Research to understand the processes that are involved:

- · with universities and research institutes
- recovery of peat (Centre for Wetland Ecology)
 - study optimal circumstances
 - practical experiment
- functioning of 'natural cap'
 - geohydrology
 - mass transport
 - adsorption
 - diffusion
 - · microbiological decay
 - processes at surfacewater/groundwater interface
 - ecological risks
 - monitoring system

openingen, November 9-10, 2009 BreenRemediation, Incorporating Sustain

Lessons learned - integration of design, remediation and management -

- the project is not finished after remediation
- look for opportunities in design and management
- use measurements and visual information from the remediation and – in time – adjust your original design
- to prevent risks, use natural occurring processes
- fit the landfill in the surrounding landscape

The design, including the natural cap

Inrichtingsplan volgermeerpolder definitief ontwerp

Inrichtingsplan volgermeerpolder definitief ontwerper

Inrichtingsplan volgermeerpolder def

Conclusions The natural cap an example of green remediation

green remediation

- simple and effective concept, based on natural principals
- great potential for landfill remediation
- prevents replacement of the standard cover
- a solution for landfill remediation (worldwide)

sustainable

- peat captures significant amounts of CO2
- peat as isolation
- interception of contaminants by peat as a carbon filter

openinagen, November 9-10, 2009

