Green Remediation: Reducing The Environmental Footprint Of Contaminated Site Cleanups

Green Remediation Conference Copenhagen, DK. November 2009

Carlos S. Pachon - MEM, MBA pachon.carlos@epa.gov

U.S. Environmental Protection Agency
Office of Superfund Remediation and Technology Innovation

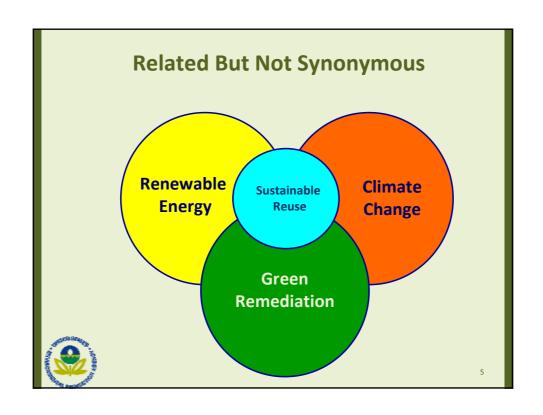
What is "Green Remediation"?

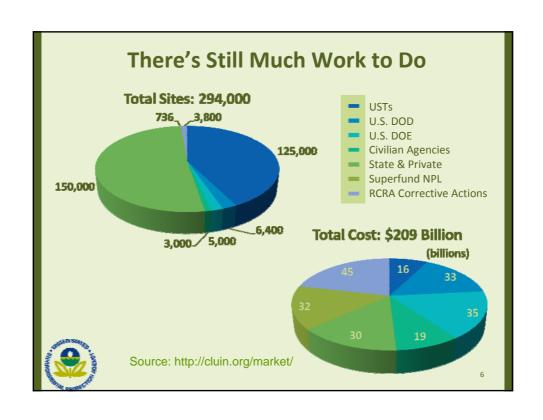
Definition: The practice of considering all environmental effects of remedy implementation and incorporating options to minimize the environmental footprints of cleanup actions.

Green Remediation: Common Themes in Site Cleanup Programs

- Fits within existing frameworks
- Opportunities exist throughout site investigation, design, construction, operation, and monitoring
- Addresses core elements (see figure)

3


U.S. EPA Administrator's Comments on Stewardship & Sustainability


- "Enhancing EPA's environmental stewardship in the implementation of its core missions"
- "Harnessing non-regulatory agenda to enhance sustainability given limited resources"
- "How do actions taken on a regulatory basis help us advance sustainability?"
- "Think of simple things that have a broad impact"
- "Consider how the Agency impacts local communities in fulfilling it's mission"

* From notes taken at NACEPT Environmental Stewardship Subcommittee public hearing. Arlington, VA. July 1, 2009.

4

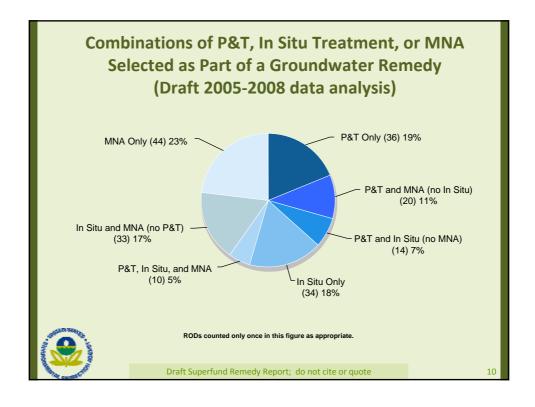
Carbon & Energy Footprints of Superfund Cleanup Technologies

Technology	Estimated Energy <i>Annual Average</i> (kWh*10³)	Total Estimated Energy Use <i>in 2008-2030</i> (kWh*10 ³)
Pump & Treat	489,607	11,260,969
Thermal Desorption	92,919	2,137,126
Multi-Phase Extraction	18,679	429,625
Air Sparging	10,156	233,599
Soil Vapor Extraction	6,734	154,890
Technology Total	618,095	14,216,209

Annual Carbon Footprint (MT CO2) Sum of 5 Technologies 404.411

Superfund Source Treatment Technologies by Year (Draft data)

Technology	2005	2006	2007	2008	Total	% of Total		
IN SITU								
Soil Vapor Extraction	7	5	8	9	29	14%		
Bioremediation	3	7	2	1	13	6%		
Solidification/Stabilization	2	5	2	3	12	6%		
In-Situ Chemical Oxidation (ISCO)	3	3	2	1	9	4%		
Multii-phase Extraction	3	0	3	3	9	4%		
Other*	4	5	2	3	14	7 %		
EX SITU								
Physical Separation	9	10	8	10	37	18%		
Solidification/Stabilization	6	9	6	8	29	14%		
Recycling	5	4	2	1	12	6%		
Surface Water Treatment	2	3	2	3	10	5%		
Unspecified Off Site Treatment	2	2	2	4	10	5%		
Other**	7	10	4	0	21	10%		
Total	53	63	43	46	205			



*Includes Flushing, Fracturing, Phytoremediation, Thermally Enhanced Recovery, and Volatilization
**Includes Biopile, Free Product Recovery, Incineration, Leachate Treatment, Neutralization, Open Burn/Open
Detonation, Soil Vapor Extraction, Thermal Desorption, Unspecified On Site Treatment,
Unspecified Thermal Treatment

Superfund Groundwater Treatment Technologies by Year (Draft data)

Remedy Type	2005	2006	2007	2008	Total
Groundwater Pump and Treat	20	20	22	18	80
In Situ Treatment of Groundwater	22	27	27	15	91
Bioremediation	12	19	17	11	59
Chemical Treatment	8	10	14	4	36
Other*	10	5	2	1	18
MNA of Groundwater	31	32	28	16	107
Groundwater Containment (VEB)	4	3	5	1	13
Other Groundwater	68	83	76	56	283
Institutional Controls	58	73	67	48	246
Monitoring	61	79	57	39	236
Other**	5	7	6	9	27
Total of Remedy Types	145	165	158	106	574

*Other includes Air Sparging, Fracturing, Multi-Phase Extraction, Phytoremediation, and PRB
**Other includes Alternate Drinking Water, Install New Water Supply Wells, Sewer/Sump Abandonment, Treat
at Use Location, and Well Head Tre

Core Elements: Air Emissions

- Lower air emissions leading to reductions in harmful particulate matter and ground-level ozone precursors
- Use of cleaner fuel and retrofit diesel engines
- Modified operations to reduce operating and idle time

Diesel oxidation catalysts, diesel particulate filters, selective catalytic reduction, and ultra-low sulfur diesel are options for reducing emissions from onsite equipment

Field Machinery and Vehicles Used for a Typical Multi-Phase Extraction Project over Five Years	Fuel (gallons)	CO ₂ (lbs)
Site preparation: One Bobcat with intermittent use of flatbed trailer-truck or dump truck operating for 26 weeks	8,996	199,711
Well construction: Truck-mounted auger system installing ten 75-foot extraction wells over 30 days	612	13,586
Routine field work: Two pickup trucks for site preparation, construction, treatment system monitoring, sampling, and repair over five-year duration	19,760	383,344
Total for Project Life:	29,368	596,641

Construction could account for 30-40% of fuel consumption and air emissions of a cleanup.

Core Elements: Water Requirements & Resources

- Minimum fresh water use and maximum reuse
- Prevention of water quality impacts, e.g. nutrient-loading or disruption of natural hydraulics
- Reclaimed treated or stormwater for beneficial use or storage
- Alignment with proposed EPA rule on construction effluent:
 - Specific BMPs at all construction sites
 - Sediment basins at sites > 10 acres
 - Numeric limits of turbidity

at sites > 30 acres with high rainfall and clay content

Portable closed-loop wheel washing systems for reducing onsite and offsite trackout during construction

Rock-filled stormwater channels and erosion control blankets used for excavation and backfilling at former U.S. Navy landfill

http://cicacenter.org/cs.cfm

Core Elements: Land & Ecosystems

- Minimal habitat disturbance such as noise and lighting
- Soil and sediment protection from compaction, decon, or uncontrolled traffic
- Use of local byproducts such as fly ash or ag waste
- Ecosystem restoration and protection practices such as selecting native plant species
 and relocating affected animals

Metal salt crust along Upper Arkansas River in Colorado prior to Superfund removal

Ten years after applying municipal biosolids and assorted nutrients along the Arkansas River

"I promise I'll walk and feed him"

... alligator rescues during removal actions at contaminated swampland in Georgia

12

Core Elements: Material Consumption & Waste Generation

- Site cleanups often require demolition work, use raw materials and generate waste
- Reuse and recycling of materials, including C&D debris and clean metal
- Reduction of secondary wastes such as soil corings, wastewater, expended chemicals, routine supplies, and single-use materials
- Passive sampling devices producing minimal waste
- Minimized extraction and disposal of natural resources

10,000³-yd soil removal in Georgia yielding 280 tons of scrap steel and 58 tons of tin left by past wood treating

Concrete salvaging during cleanup at Barksdale AFB in Louisiana to help meet federal "greening the government" goals

Triad planning for 10-day mobilization to investigate plus conduct removal at Paducah GDP in Kentucky, and only 23 lab samples

Core Elements: Energy Requirements

- Renewable energy systems in remote locations or to offset grid electricity
- Optimized and effective treatment systems
- Energy efficient equipment operating at peak performance

PV array to pump 2-3 gpm of water through a low-energy mulch bioreactor at Altus AFB in Texas

10-kW turbine for ground water circulation, reducing grid electricity consumption by 26% at former Nebraska ordnance plant

Portable PV system for 5-month SVE after oil pipeline break at Rocky Mountain House air base in Alberta, Canada

15

OSWER Green Remediation "Strategy"

Major efforts in U.S. EPA/OSWER to advance green remediation best practices across cleanup programs:

- Principles for Greener Cleanups: Common policy position for all U.S. EPA cleanup programs
- Superfund Green Remediation Strategy: "Operationalizing" the Principles in the Superfund Cleanup Program
- Voluntary Green Cleanup Standards & Certification System: A robust tool for fostering greener cleanups in the various cleanup programs
- RE-Powering America's Land: Renewable energy on contaminated lands

Key Action	Description
	Policy and Guidance Development
they diction \$1	Cartly the late of green remediation in remedy specifies and implementation
Resour	ne Development and Program Implementation
Any Action 63	Develop a compension of protects and tools to help project and Program managers energine green remediation practices
Ray Action 63	identify options that engine use of power-scheduling procines
Rep Action 64	Address at polisiants and desel emissions
Key Action #1	Counting pilot projects to evaluate and demonstrate green remarkation applications
Key Action Pf	Estation opportunities in contracts and accretions agreements to shrelly green remediation practices in selected remedies
May Action #7	Communicate and share success stoles and lessess learned among trapementers' across the Program and the politic
	Program Evaluation
Key School FF	Evaluate green remediation application of the bits level
New Action PE	Develop Program evaluation miserures
Nav Action P10	Execute the boarding from Remodalize Strategy

www.clu-in.org/greenremediation

Aerojet-General Corporation	CA	*	8			
Altus Air Force Base	ОК	*	8	۵		۵
Apache Powder	AZ	*	8	۵		
Barksdale AF Base	LA			۵	*	۵
BP Casper	WY				*	۵
BP Paulsboro	NJ	*	8			
California Gulch	co		8			۵
Crozet Orchard	VA	*	8	۵		
De Sale Restoration Area	PA	*	8	۵	*	۵
Delfasco Forge	TX	*	8			۵
Former Carswell Air Force Base	TX	*	8			۵
Former Ferdula Landfill	NY	*	8			
Former Nebraska Ordnance Plant	NE	*	8			
Former St. Croix Alumina Plant	VI	*	8			٥
Fort Carson	co	*	8	۵		۵
Frontier Fertilizer Superfund Site	CA	*	3			

17